直流メモリレコーダ DMR-01

取扱説明書 [第6版]

ご使用前に取扱説明書をよくお読みいただき、 ご理解された上で正しくお使い下さい。 又、ご使用時、直ぐご覧になれる所へ大切に 保存して下さい。

本社,工場 〒529-1206 滋賀県愛知郡愛荘町蚊野 215 TEL 0749 - 37 - 3664 FAX 0749 - 37 - 3515 東京営業所 〒101-0032 東京都千代田区岩本町 3-4-5 第1東ビル5階 TEL 03 - 5809 - 1941 FAX 03 - 5809 - 1956 営業的なお問合せ : sell-info@soukou.co.jp 技術的なお問合せ : tec-info@soukou.co.jp URL : http://www.soukou.co.jp

	安全にご使用いただくために2
	1. 仕様
	2. 各部名称
	3. 測定準備 3-1 記録計の接続8 3-2 内蔵時計の設定8
	 4. 測定方法 4-1 電圧記録、電流記録共に使用する場合
	5. メモリ内容の確認・消去 5-1 本体ディスプレイでの確認
	6. メモリデータの転送(ハイボルトビュー) 6-1 インストール前の準備
	 7. CVケーブルの劣化判定基準 7-1 漏れ電流の最終値を見る(漏れ電流値)
	8. ハイボルトビューの操作 8-1 測定データ表示
<u>ح</u>	▶形図

安全にご使用いただくために

安全にご使用して頂く為、試験装置を使用になる前に、次の事項を必ずお読み下さい。 仕様に記されている以外で使用しないで下さい。 試験装置のサービスは、当社専門のサービス員のみが行えます。 詳しくは、(株)双興電機製作所にお問い合わせ下さい。

人体保護における注意事項

感電について

人体や生命に危険が及ぶ恐れがありますので、各測定コードを接続する場合は、 必ず無電圧状態を確認して接続して下さい。

電気的な過負荷

感電または、発火の恐れがありますので、入力回路には指定された範囲外の電圧を 加えないで下さい。

パネルの取り外し

試験装置内部には電圧を印加、発生する箇所がありますので、パネルを取り外さないで下さい。

機器が濡れた状態

感電の恐れがありますので、機器が濡れた状態では使用しないで下さい。

ガス中での使用

発火の恐れがありますので、爆発性のガスがある場所では使用しないで下さい。

機器保護における注意事項

電源

指定された範囲外の電圧を印加しないで下さい。

電気的な過負荷

測定入力には指定された範囲外の電圧、電流を加えないで下さい。

振 動

機械的振動が直接伝わる場所での使用、保存はしないで下さい。

環境

直射日光や高温多湿、結露するような環境下での使用、保存はしないで下さい。

防水、防塵

本器は防水、防塵となっていません。ほこりの多い場所や、水のかかる場所での使用、保存はしないで下さい。

故障と思われる場合

故障と思われる場合は、(株) 双興電機製作所または、販売店までご連絡下さい。

警告

この製品は、高圧電力設備の試験、点検をするための機器で、一般ユーザーを対象とした試験装置ではありません。電力設備の点検、保守業務に携わる知識を十分に もった方が操作を行う事を前提に設計されています。 その為、作業性、操作性を優先されている部分がありますので、感電事故等が無い

よう、十分安全性に配慮して下さい。

免責事項

◎本製品は、高圧電力設備の試験、点検をする装置です。試験装置の取扱いに関係する。

専門的電気知識及び技能を持たない作業者の誤操作による感電事故, 被試験物の破損などについては弊社では一切責任を負いかねます。

本装置に関連する作業,操作を行う方は,労働安全衛生法 第六章 労働者の就業に当たっての 措置安全衛生教育 第五十九条,第六十条,第六十条の二に定められた安全衛生教育を実施して 下さい。

◎本製品は、高圧電力設備の試験、点検をする装置で、高圧電力設備全体の電気特性を改善したり 劣化を抑える装置ではありません。

被試験物に万一発生した各種の事故(電気的破壊,物理的破壊,人身,火災,災害,環境破壊) などによる損害については弊社では一切責任を負いかねます。

◎本製品の操作によって発生した事故での怪我,損害について弊社は一切責任を負いません。 また,操作による設備,建物等の損傷についても弊社は一切責任を負いません。

。 みた, 探作による設備, 建初寺の須腐についても奔社は一切員任を良いよせん。

◎本製品の使用,使用不能によって生ずる業務上の損害に関して,弊社は一切責任を負いません。
◎本製品の点検,整備の不備による動作不具合及び,取扱説明書以外の使い方によって生じた損害
に関して,弊社は一切責任を負いません。

◎本製品に接続する測定器等による誤動作及び、測定器の破損に関して、弊社は一切責任を負いません。

取扱説明書は、弊社ホームページより最新版をダウンロードして頂けます。

URL:http://www.soukou.co.jp QRコード(取扱説明書のページ)

1. 仕様

使用電源	:単3アルカリ乾電池 8本
電流記録計入力 測定精度	:1μAでDC10mV :1μA(100mV)に対し±3%以内
電圧記録計入力 測定精度	:1kVでDC10mV :1kV(100mV)に対し±3%以内
メモリ測定機能	
メモリ内容	: 高圧出力の漏れ電流(アース電流)をメモリします。 零圧測定は、零圧入力を行わたい提合、試験零圧を設定します。
メモリ動作	 ・測定スイッチ "ON" で漏れ電流の記録を開始し、"OFF" するまでを 1データとして記録する。
測定電流	 : 0. 001~40 μA (Low レンジ) 0. 1~800 μA (Ηι レンジ)
分解能	$: 0. 001 \mu A (Low \by y) 0. 2 \mu A (Hi \by y)$
測定電圧	:0~22kV
分解能	:0.01kV
マニュアル設定	:0~25kV
サンプリング速度	:約5回/秒
メモリサンプリング時間 メモリ数	:毎秒5回サンプリングで最大10分間測定します。 :50データ
トリガ動作	:測定開始1分後から、設定値以上の電流が流れた場合、その電流値を記憶

- トリカ動作 する。記録内容は、高圧出力から設定値以上になった時間と設定値以下に なった時間、その間の最大値。
- トリガデータ数 :100個
- トリガ設定範囲 : 0. 1 μ A~40 μ A (Low b) ψ)、2~800 μ A
- トリガ設定単位 : O. 1 µ A単位(Low レンジ)、2 µ A単位(Hi レンジ)
- バックアップ

リチウム電池による測定メモリバックアップ

通信ポート : RS-232C、USB ポート

付属ソフト

ハイボルトビューソフト
 機能 : 測定データの表及びグラフ表示
 測定ポイント別管理
 成極比、弱点比等の判定機能

測定データ :時間的なグラフに表示します。

トリガデータ : 各データごとに高圧発生からの経過時間と設定値以下になった時間、及び その時の最大電流値を表にして表示します。

- 判定値
 :最終電流値による判定結果、成極比、弱点比を表示します。
- **対応OS**:Windows7,10,11

外形寸法	:170 (W) ×265 (D) ×185 (H)
重量	:約3kg(電池含む)

使用環境

温度範囲	:0~40℃	
湿度範囲	:85%以下(但し、	結露が無いこと)

付属品

取扱説明書		1部
データ転送用 USE	3ケーブル	1本

2. 各部名称

1. USBコネクタ

パソコンに測定データを転送する場合に接続します。

- RS-232Cコネクタ パソコンに測定データを転送する場合及びメモリ内容を専用プリンタで 印字する場合に接続します。
- 3.表示ディスプレイ メモリ動作に関する設定等の表示部分です。
 4.プリントキー
 - メモリ内容の印字を行います。
- DOWNキー 設定内容の変更等を行います。
- **6. UPキー** 設定内容等の変更を行います。
- 7. セットキー 設定した項目の決定を行います。

- 8. モードキー 各項目を切り替えます。
- 9. 測定キー
 - 測定の開始と終了を行います。
- **10. 電池BOX** 本装置、動作用電池の収納BOXです
- **11. 電源スイッチ** 本装置のメインスイッチです。
- **12. 電圧記録計端子** 電圧に応じ出力された、記録計用電圧の測定を行います。 (1 k V→1 0 m V)
- 13. 電流記録計端子
 電流に応じ出力された、記録計用電圧の測定を行います。
 (1 µ A→1 OmV)

3. 測定準備

3-1 記録計端子への接続

記録計コードを電流測定端子に接続し、最終の電圧測定を行う場合は、 電圧測定端子にも接続します。 コードは、記録計コードの赤がプラス(+)、黒がマイナス(-)となります。

注意

記録計コードは、絶縁抵抗測定時の高電圧出力に対して耐圧の保証はできません。絶縁抵抗測定時に、記録計コードを高電圧印加部に近づけると、故障の原因となりますので、絶対に近づけないで下さい。

3-2 内蔵時計の設定

- 1) 電源を入れます。
- 2) モードキーを何回か押すと、時計設定画面(年)の表示になります。

3) DOWN キーを押すと月の表示に変わります。

- 4) 同様に DOWN キーを押す事により、日→時→分→秒と変わります。
- 5)時間を変更したい場合は、時間に合わせてセットキーを押します。

- 6) UP、DOWNキーで時刻を合わせます。
- 7)設定が完了すれば、再度セットキーを押すとブリンク表示が消えます。

4. 測定方法

4-1 電圧記録、電流記録共に使用する場合

- 1) リード線を接続して下さい。(図1参照)
- 2)メモリ機能の設定を行います。 現在の設定画面が表示されます。

UPとDOWNキーで設定内容の表示が切り替わります。 表示内容:電流レンジ、試験回路、トリガ設定値

3) 電流レンジの設定をします。

設定例:電流レンジ-Loレンジ トリガ電流設定値-5.0µA 電流レンジはLoレンジ(0.001µA~40µA)、Hiレンジ(0.1µ~800 µA)があり、測定を行う電流に対して適切なレンジに設定します。 ※ケーブル診断時はLoレンジに設定します。 セットキーを押して下さい。

UPとDOWN キーで設定内容が切り替わります。

設定が完了すると再度、セットキーを押して確定です。 ブリンク表示が停止します。

- 4) DOWNキーを押すと、設定項目が切り替わります。
- 5) 試験回路の設定をします。 セットキーを押して下さい。

---- *ス*タンバイ ----シケンカイロ R ← -ブリンク表示します

UPキーを押すとS相、T相、3相の順番に変わります。

---- X92/17 ----З シケンカイロ

設定が完了すると再度、セットキーを押して確定です。 ブリンク表示が停止します。

- 6) DOWNキーを押すと、設定項目が切り替わります。
- 7)トリガ電流値の設定をします。
 セットキーを押して下さい。

UP、DOWNキーでトリガ電流値の設定値を変更します。

設定が完了すると再度、セットキーを押して確定です。 ブリンク表示が停止します。

8) 試験回路の配線等を再確認し、測定キーを2秒間(長押し) 押して下さい。

測定がスタートし、現在の測定値が表示されます。

9)ハイボルトテスタの電圧を上昇させます。試験時間電圧を印加したら、測定キーを再度2秒間(長押し)押して下さい。測定を終了します。その後、ハイボルトテスタの出力をOまで下げます。

※測定を終了した時点での印加電圧が試験電圧として記録されますので、先に電圧を下げます と、下げている電圧を記録する事になるのでご注意下さい。

図1:電流記録、電圧記録共に使用する場合(例、HVT-11Kとの接続)

4-2 電圧を手動で設定する場合

電圧記録計の無い機種(HVT-25等)の場合、成極比等の判定を行う為には 印加電圧の情報で、これをあらかじめ手動で入力しておく必要があります。

メモリ機能の設定については、電圧記録計、電流記録計共に使用する場合と同様に行って下さい。 ※メモリ機能の設定は、モードに関係なく共通になっています。

- 1) リード線等を接続して下さい。(図2 参照)
- 2)メモリ機能の設定が完了したら、モード切替キーを押し、マニュアルでの電圧設定モードに 変更します。

3)試験電圧の設定をします。
 設定例:試験電圧 10.00kV
 セットキーを押して下さい。

UP と DOWN キーで試験電圧を設定します(長く押し続けるとカウントスピードが 早くなります。

設定が完了すると再度、セットキーを押して確定です。 ブリンク表示が停止します。

4) 試験回路の配線等を再確認し、測定キーを2秒間(長押し)押して下さい。 測定がスタートし、現在の測定値が表示されます。

- 5) ハイボルトテスタを試験電圧まで上昇させます。
- 6)試験時間電圧を印加したら、測定キーを2秒間(長押し)押し高圧出力をOに下げ、測定 終了します。

図2:電流記録のみを使用する場合(例、HVT-25との接続)

4-3 メモリ内容の表示

モードキーを何回か押してデータ測定の表示にします。

UPとDOWNキーでメモリ内容の表示が切り替わります。

表示内容

試験電圧	:	測定を終了した時点での電圧値です。
最終電流値	:	測定を終了した時点での電流値です。
測定時間	:	測定の開始から終了までの時間です。
トリガ数	:	電流設定値を越えた数です。
測定日時	:	測定をおこなった日時です。
測定時間	:	測定の開始から終了までの時間です。

5. メモリ内容の確認・消去

測定したメモリデータの確認と消去方法です。

5-1 本体ディスプレイでの確認

1) モードキーを何回か押すと、設定画面の表示になります。

UPとDOWNキーでメモリ内容の表示が切り替わります。 表示内容:試験電圧、トリガ数、測定時間、最終値、測定日時、測定時間

5-2 専用プリンタ(オプション)での確認

- 1)本体と専用プリンタ(BL-80RS)を専用コード(RS-232C クロスケーブル)で 接続します。
- 2) プリンタの電源スイッチを "ON" にします。
- 3) プリントキーを押すとメモリ番号、試験電圧、最終電流値の一覧が印刷されます。

各メモリ番号のデータの印刷例

、疣」 パンゴウデータ					
No.1 2006.7	.9 11:5	59			
シケン デンアツ 1.	98 kV				
010s: 0.2uA	020s:	0.1uA	030s:	0.4UA	
040s: 0.2uA	050s:	0.2UA	060s:	0.2UA	
070s: 0.2uA	080s:	0.2UA	090s:	0.2UA	
100s: 0.2uA	110s:	0.2UA	120s:	0.2UA	

メモリデータリストの印字例

メモノーデ[・]-ターレスト No.1 2006.7.9 11:59 シケンデ[・]ンアツ・・・ 1.98 kV ソクティ ジ カン・・ 127.4 ビョウ サイシュウチ・・・・・ 0.071 uA トレガ デ[・]-タ・・・・ 0 カイ No.2 2006.7.9 12:06 シケンデ[・]ンアツ・・・ 1.98 kV ソクティ ジ カン・・ 9.6 ビョウ サイシュウチ・・・・・ 0.039 uA トレガ デ[・]-タ・・・・ 0 カイ No.3 2006.7.9 12:08 シケンデ[・]ンアツ・・・ 1.98 kV ソクティ ジ カン・・ 802.6 ビョウ サイシュウチ・・・・・ 65.519 uA トレガ デ[・]-タ・・・ 21 カイ

5-3 メモリの消去

1) モードキーを何回か押すと、消去画面の表示になります。

- - ALLメモリ・ショウキョ -セットキー 2ビョウオシ

2) セットキーを2秒以上押すと消去中の表示になります。

- - ALLメモリ・ショウキョ - -ショウキョ・チュウ

3) 消去完了画面が表示してメモリ消去完了です。

- - ALLメモリ・ショウキョ - -ショウキョ・カンリョウ

6. メモリデータの転送 (ハイボルトビュー)

6-1 インストール前の準備

株式会社 双興電機製作所ホームページより、<u>USBドライバーとハイボルトビューを</u> <u>ダウンロードをして下さい。</u>

(<u>https://soukou.co.jp/</u>)

ホームページを開きましたら、「製品情報」を選択し、次に「ソフト」を選択します。

次に①「USBドライバー」を選択し、ダウンロードします。 ※ダウンロードにつきましては、任意の場所に保存し圧縮ファイルを解凍して下さい。

次に②「ハイボルトビューソフト」を選択し、<u>ダウンロード</u>して頂き、圧縮ファイルを 解凍して下さい。

🔋 > PC > ダウンロード > DMView_SetupVer1-0-0-31.zip

^	名	前
	1 1 2	DMView_Setup.msi system.ini Thumbs.db

これで、インストール前の準備ができました。

6-2 USBドライバーのインストール

DMR-01は、パソコンへ直接接続できる様にRS-232C、USBポートを装備しております。

USBポートを利用する場合は、ダウンロードしたドライバーをインストールします。 *RS-232Cを使用される場合は、ドライバーのインストールは必要ありません。 接続のケーブルは、RS-232Cの場合は、インターリンクケーブルを使用して下さい。

1) DMR-01の電源を ON 状態でパソコンにUSBで接続すると以下のウィザード が起動します。

 一覧または特定の場所からインストールする(詳細)
 を選択し、次へ(N)
 をクリックして
 下さい。

3)次の場所を含めるにチェックを入れ、参照より先程ダウロードされたフォルダを 指定して下さい。

4) ダウンロードしたファイル保存場所を選択し、次へ(N) をクリックして下さい。

新しいハードウェアの検出ウィザード	
ソフトウェアをインストールしています。お待ちください	
USB High Speed Serial Converter	
デ ftdiunin.exe コピー先 C-¥WINDOWS¥System32	,
(長る(田))	次へ(N) > キャンセル

5) インストールが完了すると完了画面が表示されます。

完了画面が表示すれば 完了 をクリックして下さい。

6) インストール完了後、再びハードウェアのウィザードが起動します。 ドライバーディスクをセットしたままで、同様の事を行って下さい。

6-3 ハイボルトビューのインストール

- 1)ダウンロードファイルを、インストール行うパソコンへ保存して下さい。
- 2)ファイル名を指定して実行を選択して下さい。
- 3)参照でダウンロードの実行ファイルを選択してOKをクリックして下さい。

ファイル名	を指定して実行
-	実行するブログラム名、または開くフォルダやドキュメント名、インターネットリソース名を入力してください。
名前(<u>O</u>):	A:¥HVTView_Setup.msi
	OK キャンセル 参照(@)

イイボルトビューのセットアップ画面が表示します。
 インストールを行う場合は、 次へ をクリックして下さい。

🖟 HVTView	
HVTView セットアップ ウィザードへようこそ	The second
インストーラは HVTView をインストールするために必要な手順を示します。	
警告:のコンピュータプログラムは、日本国著作権法および国際条約により保護されてい す。このプログラムの全部または一部を無断で複製したり、無断で複製物を頒布すると著作 の侵害となりますのでご注意ください。	康

5) ハイボルトビューソフトをインストールするホルダと使用ユーザーを選択します。 選択が完了すると 次へ をクリックして下さい。

🛃 HVTView	
インストール フォルダの選択	
インストーラは次のフォルダへ HVTView をインストールします。	
このフォルダにインストールするには[次へ]をクリックしてください。別の: ルするには、アドレスを入力するか[参照]をクリックしてください。	フォルダにインストー
フォルダ(E):	
C:¥Program Files¥SOUKOU¥HVTView¥	参照(<u>R</u>)
	ディスク領域(D)
HVTView を現在のユーザー用か、またはすべてのユーザー用にインストール	します。
○すべてのユーザー(E)	
●このユーザーのみ(M)	
キャンセル < 戻る(B)	次へ(<u>N</u>)>

6) インストール内容が宜しければ 次へをクリックして下さい。

7) インストールの完了画面が表示します。 閉じる をクリックします。

HVTView	
インストールが完了しました。	and the second se
HVTView は正しくインストールされました。	
終了するには、[閉じる]をクリックしてください。	
++	ンセル 〈戻る個 閉じる()

デスクトップにデマンドビューソフトのアイコンが表示されます。
 インストールは、正常に完了しました。
 HVTViewのアイコンをダブルクリックするとハイボルトビューソフトが起動します。

6-4 ハイボルトビューの操作(通信設定)

パソコンとのデータ通信の設定を行います。

- 1) HVTViewのアイコンをダブルクリックするとハイボルトビューソフトが起動します。
- 2) メニューバーの [設定] → [通信設定] を選択して下さい。

🏭 ハイボルトテスタ							
ファイル(E) 測定データ(M)	設定(S) 表示	〒120 ヘルプ(田)					
A . 3 . 4 ·	* ?		測定値軸: 1000 🗸	μA 表示開始時間:	0.0 🔽 分 幅: 0.5	✔ 分	
需要家名		1	J-フ [°] ル		測定5	-*-9	
試験電圧(k∀)		成極	比	試験環境		試験日時	
最終値(μA)		弱点	Æ	試験条件		ケーフ、ル相重突見	
<u>トリが設定値(μA)</u>		シース絶縁	(MΩ)	備考			
測定時間 測定データ (分:秒) (µA)				トリガー	データ		
	停止(分:秒)						
	最大値(µA)						
	- S						2
	1000	10					
	_						
	900						
	800						
	-						
	700						
	_						
	600						
	500						
0	-						
	400						
	300						
8							
	200						
	100						
	0.0	0	.1	0.2	0.3	0.4	0.5
ม มีวัง							

3)設定画面が表示します。

ポート番号は、接続を行っているパソコンの通信ポートに合わせて変更して下さい。 その他は、下記の画面の内容を参考に設定します。

通信設定						
ポート番号:	COM7					
ボーレイト:	9600 💌					
データ長:	8 💌					
パリティチェック:	なし 💌					
ストップビット:	1 💌					
フロー制御:	ハードウェア 🔽					
OK キャンセル						

4)設定が完了したらOKをクリックします。

6-5 ハイボルトビューの操作(需要家データの登録)

需要家データ(測定箇所)の登録を行います。

- 1) HVTViewのアイコンをダブルクリックするとハイボルトビューソフトが起動します。
- 2) メニューバーの [測定データ] → [需要家情報の編集] 又は、画面左上側のアイコン(需要 家情報の編集)を選択して下さい。

3) 需要家情報の編集画面が表示します。

		ケー	ブル名称	測定データ名称			
			加一前除		1		
					5		
<u>追加</u> 定データー 覧 :	肖順余						
<u>追加</u>	前版余		試験電圧 1½が設定 (火公) (レム)	成種比 弱点比	備考		
<u>追加</u> 定データー覧: 測定日	削除 測定時	展終曲 (例, µA)	武装電圧 水() (UA) (UA)	威極比 弱点比	備考		
<u>追加</u> [定データー覧: 測定日	削除 測定時		■ 新豊電圧 17万装定	咸睡比 弱点比	備考		

4)需要家名称を入力します。

需要家名称の追加をクリックすると、新規追加画面が表示します。 測定を行う需要家の名称を入力しOKをクリックします。

新規追加	
需要家名称: (株)○×△電機	
	OK キャンセル

5)測定を行うケーブルの名称を入力します。 ケーブル名称の追加をクリックすると、新規追加画面が表示します。 測定を行うケーブルの名称を入力しOKをクリックします。

新規追加		×
ケーブル名称: 受電引き込みケーブル		
	OK キャンセル	

6) 測定データの名称を入力します。

測定データ名称の追加をクリックすると、新規追加画面が表示します。 測定を行うケーブルの名称を入力しOKをクリックします。

新規追加	
測定データ名称: 2006年度ケーブル診断データ	
	OK キャンセル

7)需要家情報のデータ入力を行います。

試験内容及びシース・対地漏洩電流、判定基準を入力します。 測定条件等、変更したい測定データ名称を選択して下さい。 判定基準は、一般的な基準に初期値の値が設定されております。社内基準等があれば変更し ます。

委画家デーカ編集	Ē			_						
m3ca、ノ	e									
特要家リーク			トーブルクチャ		80-2	h di ikr				
需要求石作 (株)()×△電視		-	ケーノル・石小 受電引き込みケ	ーブル	2005年月	メニキャ 夏ケーブル記念断	データ			
◇+□製作所		1	第2キュービクルズ	žŋ	2006年度	まケーブル診断	データ			
		L								
			追加 『	训除	追加	削除				
			測定条件/環	克						
			ケーブル種類		3相	1				
			R(mA)		0.0					
			S(mA)		0.0					
			I(mA)		0.0					
			E/TELISSY/ 長さ(m)		0.0					
			判定基準							
			成種比		不归	臭← 0.5~1.0	→良			
			弱点比		Ð	£← 1.0~5.0 -	→不良			
	100									
	「「「「「」」									
定データー覧: し	(株)○×△電	機一受電引き込	.みケーブル - 20 「試験委任	05年度ケ- NIが設定	-ブル診断テ~	-91	1			
測定日	測定時	(1), µ A)	KV)	100 Å	成極比 00(石白)	55点比 0.0 (白)	備考			
2006/04/17 2006/04/17	15:34:20	01:24.0, 4:430	7 1370	7.9	0.2 (11:18)	0.2 (8)				
営工院会										
HUPK										

- 8) 需要家データの入力が完了すると、需要家情報の編集画面のOKをクリックします。
- 9)判定値の有無の設定を行います。試験成績書に最終電流値、弱点比、成極比の数値に対して 良否判定の表示処理を解除します。 メニューバーの[設定]→[環境設定]を選択して下さい。 「成極比・弱点比の判定結果を印刷する]のチェックを外して下さい。

環境設定
印刷用紙の余白設定:
上 5 🗘 mm
🗐 🗢 mm 5 🗢 mm
下 5 🔹 mm
☑成極比・弱点比の判定結果を印刷する
OK キャンセル

10)判定処理の有無の設定を変更したらOKをクリックします。

6-6 ハイボルトビューの操作(測定データの転送)

DMR-01で記録した測定データをパソコンへ転送します。

- 1) HVTViewのアイコンをダブルクリックするとハイボルトビューソフトが起動します。
- 2)メニューバーの [測定データ] → [測定データの転送] 又は、画面左上側のアイコン(測定 データの転送)を選択して下さい。

3) 測定データの転送画面が表示します。

								測定日時	試験電圧 (kV)	最終値 (UA)	トリが設 (D A
需要家名称 (株)○×△ ◇+□製作)	電 機 所	人 () () () () () () () () () () () () ()	ーブル名称 電引き込みケ に2キュービクルネ	ーブル 送り	測定デー 2005年 2006年 1	タ名称 寛ケーブル診断 『ケーブル診断	データ テータ				
			ŝta) (i	91 0 \$;追加) <u>肖明</u> 除					
道加… (定データー覧) 測定日	<u>削除</u> :【(株)○×△電 測定時	/機-受電引き込a 最終値 (秒, µ Å)	ッケーブル - 20 試験電圧 (kV)	06年度ケ [、] ドリが設定 (µ A)	-ブル記念街所デ 成睡比	-夕】 弱点比	備考				

4)パソコンヘデータ転送をします。

パソコンと本装置を付属のデータ転送コード(RS-232C又はUSBケーブル)で接続します。

注意

絶縁診断前に接続しても構いませんが、本装置は高電圧を発生する装置です。その為、 予期せぬ放電等が発生した場合、サージ等によりパソコンが故障する恐れがあります。 接続は診断が終了してから接続する様にして下さい。

5)測定データ転送のデータ転送の開始ボタンをクリックして下さい。 データ転送・編集画面が表示されます。

データの受信		
	機器からのデータ	送信待ち
シリアルポートオープン 機器からのデータ送信待ち		
▼ 収集データを表示する		
(このチェックを外すと受信時間が若	干短縮出来ます)	中断/戻る

6) モードキーを何回か押すと、全メモリデータ転送画面が表示します。

- - - - データ・テンソウ - - - -テンソウ No. ALL O

セットキーを押しますと、全メモリ転送画面になります。

- - - データ・テンソウ - - - -テンソウチュウ

転送が完了すると下記の画面が表示されます。

指定した番号のみを一括して送信したい場合は、モードキーを押してメモリNo指定転送の 画面を表示させます。

送信したくないメモリは、プリントキーを押すと右端の記号が × に変わります。

5	データ・	テンソウ・・	
テンソウ	No.	2	\times

全てのメモリに対して選択を行います。 選択が完了すると、ALLデータ転送画面に戻します。 この時、ALLの右側に表示していた O 記号が消えます。

セットキーを押しますと、全メモリ転送画面になります。

転送が完了すると下記の画面が表示されます。

※全メモリ転送画面以外の表示で転送を行うと、表示番号以前のデータが転送されます。 例)全3データ取得し、表示がテンソウNo.2であればこの状態でセットキーを押すと データNo1、データNo2のみが転送され、データNo3は転送されません。 7) データがDMR-01からパソコンへ転送されます。

データの受信	
	000664003552
000616005677 000618006102 000620003805 000622004554	
000624003337 000626005081 000628005027	
000630006281 000632006370 000634006186 000636004584	
000638006561 000640004004 000642001888	
000646003527 000648006542 000650004177	
000652002362 000654004139 000656001982 000658001427	
000660001683 000662003585 000664003552	
✓ 収集データを表示する くこのチェックを外すと受信時間	き干短縮出来ます) 中断/戻る

8)転送完了後、右の欄の受信データリストができます。 転送したい需要家データ(需要家名称、ケーブル名称、測定データ名称)を選択し、転送を行いたいデータを受信データリストのチェック欄にチェックします。

									測定日時	試験電圧	局許値	ドリが設定
需要家名称		3	アーブル名称		測定デー	9名称			2006/04/17 15:30:51	1370	5.067	7.9
(株)〇×△雷	開業	3	電引き込みケー	ーブル	2005年/	夏ケーブル診断	データ		2006/04/17 15:34:25	240	4.430	7.2
◇+口製作所	Î	ji ji	82キュービクル道	≝ŋ	2006年度	度ケーブル診断	データ	Ē	2006/04/17 15:06:07	1670	3.979	9.0
								- I 🗖	2006/04/17 15:03:30	1390	3.250	5.2
									2006/04/17 15:51:36	1140	5.374	7.3
			isto. A		28加) 肖I除						
道加	削除 【 (株)○×△電	機-受電引き込み	×ケーブル − 20	05年度ケ-	-ブル1金町デ	-9]						
道加) 定データー 覧: 則定日	削除 【 (株)○×△電 測定時	機 - 受電引き込み	ッケーブル - 20 試験電圧 (kV)	05年度ケ [、] 「リが設定 (µ A)	-ブル記室所デ 成価比	-夕】 弱点比	備考					
道加) 定データー覧: 測定日	削除 【 (株)○×△電 測定時	(機-受電引き込み 最終値 (役, μA)	ッケーブル - 20	05年度ケ- 1 ⁹⁹ が設定 (µA)	-ブルii2断デ 成種比	-夕】 弱点比	(備考					
<u>道加.</u> [定データー 覧: 測定日	<u>肖明除</u> 【 (株)○×△電 測定時	機 - 受電引き込み - - - - - - - - - -	やケーブルー20 試験電圧 (kV)	05年度ケ [、] 197設定 (µA)	-ブル記念断デ 成種比	-夕】 弱点比	備考					

※測定データ名称は、上記の例ですと"2006年度ケーブル診断データ"の項目で 1回分の測定ポイント(仮に2、6、10kV等)が入ります。 同一ケーブルを2回測定しようとすると"2006年ケーブル診断データ1回目" "2006年ケーブル診断データ2回目"の様に測定データ名称に2つ作成するように して下さい。 9)転送データの選択が完了すれば、登録ボタンをクリックします。 チェックしたデータが、受信データリストから消え測定データー覧にデータが移動します。

需要家名称	家名称 ケーブル名称 測定データ名称								測定日時	試験電圧	最終值	ドカ設定
/441 A A 200-100		5	ーブル名称		測定データ	2名称			2006/04/17 15:06:07	1670	3.979	9.0
(休)O×△電協		2	電引き込みケ	ーブル	2005年度	ケーブル診断	データ		2006/04/17 15:03:30	1390	3.250	5.2
◇+凵製作所			2キューヒクルス	ΞŊ	2006年度	モケーフル記述的	7-9		2006/04/17 15:51:36	1140	5.374	7.3
			追加 [F	削除	追加	削除						
			測定条件/環境	境								
			ケーブル種類	31	8							
			R(mA)	0.0								
			S(mA)	0.0								
			T(mA)	0.0								
			断面(sq)	0.0								
			長でm) 00 判定基準 さない てき、05,10,0									
				1	R← 0.5~1.0	→良						
			弱点比	1	€← 1.0~5.0	→小民						
追加 削.						.,						
モナーダー 見: L 創定日	測定時	1000-1支11010000000000000000000000000000	試験電圧	いの年度り	成種比	- 弱点比	備考					
2006/04/17	15:34:25	01:24.6, 4.430	240	72	0.2 (不良)	0.2 (良)	_	_				
2006/04/17	15:30:51	01:31.8, 5.067	1370	7.9								

※ この時、既にデータが登録してあれば、以下のウインドウが開きます。 説明に従い、登録方法を選択してください。

※ また、測定データー覧の弱点比は、2つのデータの比率になりますので、電圧の高い方の データ及び、1つのデータでは表示しません。

需要家データー										測定日時	試験電圧	最終値	「りが設
需要家名称			ケーブル名和	尔	測定	ミデータ名称			_		(K#)	(PA)	T (PA
(株)○×△10 △○×製作所	(林)○×△恤寅 △○×製作所		受電引き込みケーブル 2005年度 2007年度 2009年度										
		Ī	追加	削除) <u>追</u> ;	bo) (ii	『除						
			備考					~					
			2シールド	漏れ電流									
	R#B(mA) 0.0 S#B(mA) 0.0												
	S78(mA) 0.0 T#8(mA) 0.0												
	T相(mA) 0.0 後級抵抗(MΩ) 0.0						- a ll						
			紀称拡払	(M22) I	1.0								
			の利用を整め	<i>b</i>	不良在市ち	~10 → B							
			認らけ		良← 10-	~50→不良							
			最終値		良← 1.00	0~10.000 -	→不良						
	『除												
制定データー覧:【	(株)○×△電	気-受電引き辺	みケーブルー	-2009年月	t)								
》定日 (年/月/日)	測定時 (時/分/秒)		A)	家競電圧	19か設定 (µA)	成極比	弱点比						
2009/01/16	00:32:22	0308.4, 0.00	9(良) 7(良)	2.05	20.0	1.7 (良) 25 (良)	21(注意))					
2009/01/16	00:38:50	03:05.0, 0.12	/ UE/ 3 (良)	10.10	20.0		1.3 (主息)						
-													

- 10) 同様に残りのデータも需要家データの選択を変更し、データを登録します。 *登録しなかったデータは消えてしまいますので、再度転送が必要となります。
- 11) OKボタンをクリックすると各測定ポイントに対する登録は完了です。 *OKボタンを押さないと各データは登録されませんので注意して下さい。
- 12) データが表示されます。

👪 ハイボルトテスタ							
ファイル(E) 測定データ(M)	設定(5) 表示(V) ヘルプ	θ					
	8	測定値軸:	50 💌 µA	表示開始時間: 0	10 💙分 幅: 0.5 💙 🥱	ò	
需要家名	soukou-shiga	ケーフ゛ル		test	測定デー	9	8
試験電圧(kV)	8	成極比		試験環境	晴れ 20.0度 68.0%	試験日時	2006/07/25 10:17:09
最終値(μA)	0.116(良)	弱点比		調約余件	3 作目	リーノ ル理実見 の S末目=3,1 T	38.U(sq) IUU.U(m) 相=3.1 (mA)
ト助 設定値(μA)	5.0	シース絶縁(MΩ)	100.0	備考		01018 011 11	
測定時間 (分:秒) (µA)				トリガー・	データ		
00:00.2 0.000	941生(分:1秒) 00:00.4						
00:00.4 27.706	停止(分:秒) 00:05.4						
00:00.6 40.335	最大値(µA) 41.928						
00:01.0 41.283	50 ^µ A						
00:01.2 41.289							
00:01.4 41.891	45						
00:01.0 41.928							
00.01.0 41.010							
00:02.2 40.200	40						
00:02.4 39.454							
00:02.6 38.628	35						
00:02.8 37.797							
00:03.2 36.066	30						
00:03.4 35.201							
00:03.6 34.359	25			-			
00:03.8 33.4/4							
00:04:0 32:383	20						
00:04.4 30.884							
00:04.6 29.720	15						
00:04.8 27.708							
00:05.0 23.099	10	·····					
00:05.4 7.948							
00:05.6 3.722	5	·····					
00:05.8 1.864		1					
00:06:0 1.183						-8	
00:06.4 0.831	0.0	0.1		0.2	0.3	0	.4 0.5
レディ							

- 13)登録完了のデータは自動的に保存されます。
- 14)本体のメモリデータは自動的に消去されません。

*転送データを確認し、必要でなくなったデータは消去するようにして下さい。 15)データ消去を行います。

モードキーを何回か押すと、消去画面の表示になります。

16) セットキーを2秒以上押すと消去中の表示になります。

17) 消去完了画面が表示してメモリ消去完了です。

- - ALLメモリ・ショウキョ - -ショウキョ・カンリョウ

7. CVケーブルの劣化判定基準

7-1 漏れ電流の最終値を見る(漏れ電流値)

DC10kVの電圧を印加し、数分後の漏れ電流値(最終値)を測定します。この値に より劣化を判定します。判定基準は表2のようになっています。

	CVケーブル	BNケーブル
良	1 μ A 以下	10µA以下
要注意	1~1 O μ A	10~50μA
不良	10μA以上	50μA以上

表2:漏れ電流値判定基準

ー高圧受電設備指針よりー

しかし、当社の実例によりますと、上記の表より1ケタ低い値になっており、下記の判定 基準(表3)を採用しています。

	CVケーブル	
良	0. 1 μ A 以下	(100GΩ以上)
要注意	0. 1~1μA	(10G~100GΩ)
不良	1 μ A 以上	(10GΩ以下)

表3:漏れ電流値判定基準(当社)

一当社の診断例より一

7-2 電圧の変化による絶縁抵抗の変化を見る(弱点比)

弱点比 = _

電圧を5kV、10kVと順次印加し、各電圧値における絶縁抵抗を測定し比を求めます。

第1ステップの電圧での絶縁抵抗値

第2ステップの電圧での絶縁抵抗値

この弱点比の判定基準は、表4のようになります。

表4:弱点比の判定基準

	弱点比
良	1 以下
要注意	1~5
不良	5以上

7-3 漏れ電流の時間的変化を見る(成極比)

図7:電流の時間的変化(成極比)

電圧を印加した後の、漏れ電流の変化を見ます。(1)の場合は、最終時の漏れ電流値が1分値より減っていますので良です。(2)の場合は、最終時の漏れ電流値が1分値と同じですので要注意です。(3)の場合は、最終時の漏れ電流値が1分値より増えていますので危険な状態です。各値の目安は、次の表5のようになります。

	弱点比
良	1 以上
要注意	0.5~1
不良	0.5以下

表5: 成極比の判定基準

7-4 3相の漏れ電流の不平衡を見る(相間不平衡率)

各相別々に漏れ電流を測定し、電流値の不平衡を見ます。例えば、R相=0.12 µ A S相=0.15 µ A、T相=0.2 µ Aの場合、相間不平衡率は

三相の漏れ電流の最大値一最小値

相間不平衡率 = _____ ×100

三相の漏れ電流の平均値

$$=\frac{0.2-0.12}{0.1567}\times100$$

=51%

不平衡率が200%をこえると要注意です。

表6: CVケーブルの劣化判定基準

判定		判定基準		備考
項目	良	要注意	不良(危険)	
漏洩電流	0.1 μ A以下	0.1∼1 µ A	1 μ A以上	漏洩電流の大きさ
変動	変動がない もの	時間的に離散 的な変動があ るもの	変動が大きく キックの現象 があるもの	最大値と最低値の差
不平衡			不平衡率が 200%以上 のもの	三相平均値に対する 不平衡分
時間特性	変化しない もの	時間とともに 増加するが安 定するもの	時間とともに 増加して不安 定のもの	
成極比	1以上	0.5~1	0.5以下	

8. ハイボルトビューの操作

8-1 測定データ表示

測定データの表示を行います。

- 1) HV T Viewのアイコンをダブルクリックするとハイボルトビューソフトが起動します。
- 2) メニューバーの [測定データ] → [表示データの選択] 又は、画面左上側のアイコン(表示 データの選択)を選択して下さい。

表示(V) ヘルン 	*世 成対 引 シース絶き	…測定値軸 ケーフ [*] ル 極比 点比 縁(MΩ)	1000	μA 表示開始的 武験 武験 環 抗験 流れ 電 「備 市 下	諸: 0.0 ▼ 該: (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	<mark>分幅:</mark> 0.5 】 別定7	 分 * - タ 試験E ケ-フ* II]0寺 重类頁	
θ: (49) θ: (49) 0: (49) (Corb) μ Α	成 弱」 シース絶	<u>い</u> 加定値軸: ケーフ [*] ル 極比 点比 縁(MΩ)	1000	ルA 表示開始部 試験環 試験環 満れ執着 備者	 10.0 マ 時 特 た流 リガーデータ 	<mark>分幅:</mark> 05 測定7	 分 ・ 一夕 試験E ケーブ* 胴]0寺 重类頁	
ο: (99) 3: (99) (0 μ β) μ μ Α	成 弱 シース絶	<u>ケ-ブル</u> 極比 点比 縁(MΩ)		試験現 試験発 漏(備 - 	は境 ≥件 い流 リガーデータ		* ータ 試験E ケーブ*]0寺 重类頁	
θ:₩) 3:₩) (μA) μ A	成 弱 シー ス絶	極比 点比 縁(MΩ)			8境 ≷件 込流 「 リガーデータ		試験E ケーフドル] 0寺 重类頁	
9:#9) 9:#9) μ Α				000 -	リガーデータ				
3:89 3:89 3:89 (μ A)									
μΑ									
μΑ									>
							E.		
									0000000
0.0		0.1		0.2		0.3		0.4	分 0.5
	.0		.0 0.1	.0 0.1	.0 0.1 0.2	.0 0.1 0.2			

3) 測定データの選択が表示します。表示したいデータを選択しOKボタンをクリックして下さい。

需要家名称 soukou-shiga			<u>ケ</u>	ーブルネ 1	5称	測知	定データ名称 DG年度				
(株)双興電機制	出作所		T	電送り							
			L	1.5784.2	2/4						
				니라미자카 冬件	ei t		3相一括				-
			ī	诊断方法	÷		ガード接地	方式			
			ł	新面(so)		0.0				
			ļ	 長さ(m)			0.0				
			7	天候							
			温度(°C) 湿度(%) 備考				0.0				
							0.0				-
			2	2:シール	ド漏れ電流						
			F	R相(mA	Ð		3.0				
				S村日(mA	9		3.2				~
定データー覧:【	(株)双興電機	製作所-受管	電送り)-200	6年度】						
測定日 (年/月/日)	測定時 (時/分/秒)	最後	終値 , □ A)	試験電圧 (kV)	Nが設定 (µ A)	咸極比	弱点比			
2006/07/25	11:36:27	02:17.0, 0.	039 ((良)	2	5.0	1.3 (良)	1.2(注意)			
2006/07/25	11:38:54	03:15.8, 0.	.094 ((良)	5	5.0					

4) 測定データが表示されます。

※この時、弱点比は2つのデータの比になりますので、電圧の高い方のデータ、及び1つのデータの場合、表示しません。

8-2 需要家情報の編集

需要家情報、試験結果の編集を行います。

- 1) HV T Viewのアイコンをダブルクリックするとハイボルトビューソフトが起動します。
- 2) メニューバーの [測定データ] → [需要家情報の編集] 又は、画面左上側のアイコン(需要 家情報の編集)を選択して下さい。

畾 ハイポル	トテスタ													- 7 X
ファイル(E)	測定データ(<u>M</u>)	設定(S) 表示	∃(⊻) ヘルプ(H)										
a a	需要家情報の経	編集(<u>C</u>)			測定値軸	20 💌	μA 表示	開始時間: 2	2.5 💙 分	幅: 2 🔽	分			
需要家	潮走データの 表示データの選	波(M)	電機製作	下所	ケーフ゛ル		핏	記送り		測定テ	·-9	21	006年	度
試験	電圧(kⅤ)	2		成机	亟比	1.3 (良)	試験環境 tmax 名 //t	0.0	賽 0.0%	試験[∃時 166米商	2006/07/2	5 11:36:27
- 最終	値(μA)	0.039)(良)	弱,	急比	1.2(注	意计学	15款来け 届れ 雷流	31	18	ッーノール 3.0 S相目	1里米兒 3.2 T木目=	3.1 (mA)	U.U(m)
ND 設	定値(μA)	5.	0	シース絶絶	\$(MΩ)	98.0		備考			010 010	0.61.018	0-1 (mil)	
運動	測定データ							トリガー・	データ					
00:00.2	0.000	発生(分:秒)	00:00.4											
00:00.4	5.406	停止(分:秒)	00:05.2											
00:00.6	13.079	最大値(µA)	16.017											
00:00.8	15.390													
00:01.0	15.889	20		ý.	1		a c		2	÷.			÷.	
00:01.2	16.017													
00:01.4	15.933	18												
00:01.0	15.744	2.5												
00:01.8	15.506													
00:02.0	13.234	16												
00.02.2	14.943													
00.02.4	14.334	14												
00:02.8	14.021													
00:03 0	13,708													
00:03.2	13.398	12												
00:03.4	13.087													
00:03.6	12.780	10		-			-						-	
00:03.8	12.475													
00:04.0	12.170													
00:04.2	11.866	0												
00:04.4	11.549													
00:04.6	11.201	6												
00:04.8	10.735													
00:05.0	3.700	4												
00:05.2	1.755	÷.												
00:05 6	2 501													
00:05 8	1.209	2												
00:06 0	0.674													
00:06.2	0.483	0		1			1			<u>i</u> k			1	分
00:06.4	0.401 🗸	2.5			3.0			3	.5			4.0		4.5
需要家情報の)編集													

3)需要家情報の編集画面が表示されます。 変更を行いたい測定データ名称を選択し、試験条件等の追記、変更を行います。

南張家ナージ編品	ē								
容要家テータ 			-			and to be deadled			
需要承名标 soukou-shina		 10	「ーフル·名杯」 01		200	ビアーダ治杯 6年度			
(株)双興電機製	作用所	Ť	電送り				-		
			atra (21124		<u>, , , , , , , , , , , , , , , , , , , </u>	IRA		
			1.8194.96./4	ANNA	لغز		104		 変更を行いたい測定う
			- 40,000 米 IT 条件			3相一括			
			诊断方法			ガード接地	方式		ータ名杯を選択します
		1	断面(sq)			38			
			長さ(m)			0.0			
		3	天候						\
			温度(°C)			0.0			
			湿度(%)			0.0			╲ この項日内で各内谷る
		1	備考	-					` =ı ++
			2シールド漏れ	し電流				~	史しま 9.
追加. Ă	<u>I</u> R								
定データー覧:【 測定日	(株)双興電機器 (株)双興電機器	製作所 - 受電送り 最終値)-2006年月 . 就	見】 験毎圧	円が設定	成極比	88.4 H		
2006/07/25	(時/ <u>分/粉)</u> 11:36:27	02:170, 0039 () (良) 2	(KY)	(p.A) 50	13(良)	12(主意)		
2006/07/25	11:38:54	03:15.8, 0.094	(良) 5		5.0				
		1							

4) 試験結果の編集は、測定データー覧の部分で変更を行いたい項目をダブルクリックすると 変更が可能です。

	審要家情報の編集 ■ 需要家データ編	ŧ.								Σ
	~需要家データ―									
	需要家名称			ケーブルネ	称	測定	データ名称			
	soukou-shiga (株)双典電機器	北市所		no1 受電送り		200	6年度			
				追加) <u>Ří</u> bř		IQ Ĥ	194		
				1:試験違	भ					^
				条件			3相一括			
				診断方法	£		ガード接地	方式		
				断面(sq)		38			
				長さ(m)			0.0			
성 카 주 사는 면 나는 분 가 축				天候						_
谷試験結果に対する変				温度(°C)		0.0			
				湿度(%)			0.0			
史は、この部分の変更を				備考						
(ニッキョン・カリンナ ダブリ タン				2シール	ド漏れ電流					~
行いたい部分をダブルク	〔追加 [i	UBR		D+8/						
	測定データー覧:	(株)双興電機	製作所一受賞		6年度】	Lucestern (
	(年/月/日)	(時/分/秒)	08	U A)	(kV)	(µ A)	成極比	\$\$.5.1L		
4	2006/07/25	11:36 2 0	02452 0	039(段)	2	5.0	1.3 (民)	08 (80		
	2000/07/20	11.00.04	03.13.0, 0.	054 (18)	5	3.0				
	首切涂									
									ОК	**>セル

試験結果の編集で各判定データは、最終電流値に対して行います。

試験によっては、試験終了動作でうまく終了できず放電電流等が流れている結果をメモリする事もあります。

そのような場合は、測定データより最終電流値の値を選択する事が可能です。

5) 最終電流値の変更は、測定データー覧部分の最終値の項目を選択します。

	18 A	(家情報の編集) 「需要家データ編集	Ę									X
		需要家データ										
		需要家名称			ケーブル名	称	測定	ミデータ名称				
		soukou-shiga (株)双興電機製	作所		nol 受電送り		200	6年度				
					追加	削除	」」「」」	10) (Ř	<u>I</u> R			_
最終電流値に対する変					1:試験条	件		040 47				<u>^</u>
面け この部分をクリック へ					◎○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○			318一 /活 ガード接掛:	方式			
					断面(sq)			0.0				=
します.					長さ(m)			0.0				
	$\overline{}$				天候							
					温度(C)			0.0				
		\mathbf{i}			備者			0.0				
			、 、		2:シールド	漏れ電流						
		Ciêta E	184		m#0/			20				×
				× -		ter etc. T						
		別定ナーダー「見:し」 測定日	(非)以供電機:	ALL PROPERTY OF	(1)100000000000000000000000000000000000	0年度】 試験電圧	「門が設定」	ct 45 H	4 a 55			- 1
		(年/月/日)	0時/分/粉) 11:36:27	02:17.0, 0	, FA) 1039 (良)	0kV)	(µA) 5.0	1.3 (良)	1.2 (注意)			-
		2006/07/25	11:38:54	03:15.8, 0	1094 (良)	5	5.0					
												_
		削除										
										ОК	* #V	セル

6) 最終測定データの変更画面が表示します。 最終データとして設定したい値を選択し、OK をクリックして下さい。

最終測定データの選択			
$\begin{array}{c} 01:59.8(&0.039\;)\\ 02:00.0(&0.041\;)\\ 02:00.2(&0.039\;)\\ 02:00.4(&0.039\;)\\ 02:00.8(&0.039\;)\\ 02:00.8(&0.039\;)\\ 02:01.0(&0.039\;)\\ 02:01.2(&0.039\;)\\ 02:01.2(&0.039\;)\\ 02:01.4(&0.041\;)\\ 02:01.8(&0.039\;)\\ 02:01.8(&0.039\;)\\ 02:02.2(&0.039\;)\\ 02:02.2(&0.039\;)\\ 02:02.2(&0.039\;)\\ 02:02.2(&0.039\;)\\ 02:02.2(&0.039\;)\\ 02:02.2(&0.039\;)\\ 02:02.2(&0.039\;)\\ 02:02.2(&0.039\;)\\ 02:02.4(&0.039\;)\\ 02:02.8(&0.037\;)\\ 02:03.4(&0.039\;)\\ 02:03.4(&0.039\;)\\ 02:03.8(&0.039\;)\\ 02:03.8(&0.039\;)\\ 02:03.8(&0.039\;)\\ 02:04.4(&0.039\;)\\ 02:04.4(&0.039\;)\\ 02:04.4(&0.039\;)\\ 02:04.8(&0.039\;)\\ 02:04.8(&0.039\;)\\ 02:04.4(&0.039\;)\\ 02:04.8(&0.039\;)\\ 02:04$	$\begin{array}{c} 02:05.0(&0.039 \\ 02:05.2(&0.039 \\ 02:05.4(&0.037 \\ 02:05.6(&0.039 \\ 02:05.6(&0.039 \\ 02:05.8(&0.039 \\ 02:06.2(&0.037 \\ 02:06.2(&0.037 \\ 02:06.4(&0.039 \\ 02:06.4(&0.039 \\ 02:06.4(&0.039 \\ 02:06.8(&0.039 \\ 02:07.2(&0.037 \\ 00:039 \\ 02:07.2(&0.037 \\ 00:039 \\ 02:07.4(&0.039 \\ 02:07.4(&0.039 \\ 02:07.4(&0.039 \\ 02:08.0(&0.039 \\ 02:08.0(&0.039 \\ 02:08.2(&0.039 \\ 02:08.4(&0.039 \\ 02:08.4(&0.039 \\ 02:08.4(&0.039 \\ 02:08.4(&0.039 \\ 02:08.4(&0.039 \\ 02:08.4(&0.039 \\ 02:08.4(&0.039 \\ 02:08.4(&0.039 \\ 02:09.2(&0.039 \\ 02:09.2(&0.039 \\ 02:09.4(&0.039 \\ 02:09.4(&0.039 \\ 02:09.4(&0.039 \\ 02:09.4(&0.039 \\ 02:09.4(&0.039 \\ 02:09.4(&0.039 \\ 02:09.4(&0.039 \\ 02:09.4(&0.039 \\ 02:09.4(&0.039 \\ 02:09.4(&0.039 \\ 02:09.4(&0.039 \\ 02:09.4(&0.039 \\ 02:09.4(&0.039 \\ 02:09.8(&0.039 \\ 02:09.8(&0.039 \\ 02:00.8(&0.039 $	$\begin{array}{cccc} 02:10.2(&0.039 \\ 02:10.4(&0.039 \\ 02:10.6(&0.039 \\ 02:10.8(&0.039 \\ 02:11.0(&0.039 \\ 02:11.2(&0.039 \\ 02:11.4(&0.039 \\ 02:11.4(&0.039 \\ 02:11.4(&0.039 \\ 02:11.4(&0.039 \\ 02:12.0(&0.039 \\ 02:12.2(&0.039 \\ 02:12.4(&0.039 \\ 02:12.4(&0.039 \\ 02:12.4(&0.039 \\ 02:13.2(&0.037 \\ 02:13.2(&0.037 \\ 02:13.4(&0.039 \\ 02:13.4(&0.039 \\ 02:13.4(&0.039 \\ 02:13.4(&0.039 \\ 02:13.4(&0.039 \\ 02:13.4(&0.039 \\ 02:13.4(&0.039 \\ 02:13.4(&0.039 \\ 02:13.4(&0.039 \\ 02:13.4(&0.039 \\ 02:13.4(&0.039 \\ 02:14.4(&0.039 \\ 02:14.4(&0.039 \\ 02:14.4(&0.037 \\ 02:14.4(&0.037 \\ 02:15.2(&0.03$	02:15.4(0.039) 02:15.8(0.039) 02:15.8(0.039) 02:16.0(0.039) 02:16.2(0.039) 02:16.4(0.039) 02:16.6(0.039) 02:16.6(0.039) 02:17.0(0.039)
<			
			OK キャンセル

8-3 印刷

1)印刷は画面に表示しているデータの試験成績書を印刷します。 印刷を行いたいデータを表示します。

🚟 ハイボルトテスタ							
ファイル(E) 測定データ(M) 設定(S) 表示(V) /	ヘルプ(円)					
R R 2 8	* ?	測定値軸	:50 🔽 μA :	表示開始時間: 0.0	🔽 分 幅: 🚺 🗹 分		
需要家名	(株) 双興電機	製作所 ケーブル	ل م ر	全電送り	測定データ	2006年,	变
試験電圧(kV)	5	成極比		試験環境	0.0度 0.0%	試験日時 2006/07/25	11:38:54
最終値(μA)	0.094(良) 弱点比		漏れ電流	3 作日一子古 R末月=3.0	リーク M理実員 0.0(sq) S本目=3.2 T本目=3.1 (mA)	U.U(M)
トリが設定値(μ.	A) 5.0	シース絶縁(MΩ)	98.0	備考			
測定時間 測定データ (分:秒) (µA)	?	00.4		トリガーデー	-9		
00:00.2 0.00	0 #±(3:49) 00;	05.2					
	0 FE(3.49) 00.	00.2					
00:00.8 31.42	3	002					
00:01.0 31.15	2 50 ^{µ A}						
00:01.2 31.54	5						
00:01.4 31.78	5 45						
00.01.8 31.13	6						
00:02.0 30.67	2 40						
00:02.2 30.20	2						
00:02.4 29.74	6						
00:02.6 29.02	6 00						
00:02:0 27:16	2						
00:03.2 26.60	5 80						
00:03.4 26.07	6						
00:03.6 25.51	2 25						
00:03.8 24.92							
00:04.2 23.67	20	 					
00:04.4 22.96	7						
00:04.6 22.02	5 15						
00:04.8 20.12	9						
00:05.0 15.03	10	·····					
00:05.4 4.82	3						
00:05.6 2.26	9 5						
00:05.8 1.23	4						
00.06.2 0.72	5		_				
	.0			0.5	i		1.0
154	- 1						12 17 19

2) プリンタの設定を確認し [OK] ボタンを押して下さい。

プリンタの設定	? 🛛
- プリンター プリンタ名(N): Canon LBP-1710 状態: 準備完了 種類: Canon LASER SHOT LBP-1710 場所: IP_192.168.0.215 コメント:	▼ プロパティ(P)
用紙 サイズ②: A4 給紙方法③: 自動	- 印刷の向き - 縦(Q) - 横(A)
<u>ネットワーク@0 </u>	OK キャンセル

3) 試験成績書の印刷例です。

試験電圧 (X/) 2 成極比 1.3 (魚) 試験電貨 (mA 1 = 2x (a) = 2x (b) びき (b) 73 (b) ジェン (a) ジェン (a) <th>需要家名 (林</th> <th>シ双興電機製</th> <th>作所 ケープル</th> <th>3</th> <th>を電送り</th> <th>測定デー</th> <th>9</th> <th>2006年度</th> <th>ŧ</th>	需要家名 (林	シ双興電機製	作所 ケープル	3	を電送り	測定デー	9	2006年度	ŧ
Refer (u A) 0.039 (g) If att 1.2 (28) Refer (u A) $12000000000000000000000000000000000000$	試験電圧(kV)	2	成種比	1.3 (良)	試験環境	晴れ 25.0度 62.096	試験日時	2006/07/25	11:36:27
Production Production <th>最終值(uA)</th> <th>0.039 (良)</th> <th>爾卢比</th> <th>1.2 (注意)</th> <th>試験条件</th> <th>3 相一括</th> <th>ケープル種類</th> <th>38.0(sq) 1</th> <th>00. 0 (m)</th>	最終值(uA)	0.039 (良)	爾卢比	1.2 (注意)	試験条件	3 相一括	ケープル種類	38.0(sq) 1	00. 0 (m)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	りが設定値(µA)	5.0	シ− λ絶緑(NΩ)	98.0	漏れ電流 備多	R相=3.0	S相=3.2	T相=3.1 (mA)	
					970 PH	1			
	20 ^{3/ A}								
	18								
	16								
	$\square \land$								
	12								
	10								_
	8								
4 0.0 0.5 1. 0.0 0.5 1. 10 0.5 1. 10 1.5 2. 10 1.5 2. 10 1.5 2. 10 1.5 3. 14 1 1 10 1.5 3. 110 1.5 3. 111 1.5 3.	6								
	4								
20 0.0 0.5 1. 20 21A 1.0 1.5 14 1.0 1.5 2. 10 1.5 2. 20 1.5 2. 20 2.5 3. 20 2.5 3.									
0.0 0.5 1. 21A 10 10 10 10 10 10 10 1.5 2.5 1. 10 1.5 2. 1. 1.5 2. 1. 1.5 2. 1.5 2. 1. 1.5 2.	2	<u> </u>							43
0.0 0.0 1. 018 0.0 0.0 14 0.0 0.0 10 0.0 0.0 10 1.5 2. 01 0.0 1.5 10 1.5 2. 10 1.5 2. 10 1.5 2. 10 1.5 2. 10 1.5 2. 10 1.5 3. 110 2.5 3. 1110 1.5 3.	0.0				0.5				1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0				0.0				1.0
20 10 10 8 10 10 8 10 10 10 1.5 2. 10 1.5 2. 10 1.5 2. 10 1.5 2. 10 1.5 3. 10 2.5 3. 10 2.5 3.	20 3/ A								
	20								
	18								
14 1 1 1 1 10 1 1 1 10 1.5 2 10 1.5 2	16								
12 10 <td< td=""><td>14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	14								
10 1 1 1 1 6 1 1 1 1 20 1 1 1 1 10 1 <	12								
8 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 3.0 1.0 2.5 3.0 1.0 2.5 3.0 1.0 1.5 2.5	10								
0 1.0 1.5 2. 1.0 1.5 2. 1.0 1.5 2.	8								
4 1.0 1.5 2. 1.0 1.5 2. 1.0 1.5 2.	6								
20 1.0 1.5 2.0 20 1.5 2.0 20 1.5 2.0 20 1.5 2.0 20 2.5 3.0									
2 0 1.0 1.5 2.5 3.1 1.5 2.5 3.1 1.5 2.5 3.1 1.5 3.1 1.5 3.1 1.5 3.1 1.5 3.1 1.5 3.1 1.5 3.1 1.5 3.1 1.5 3.1 1.5 3.1 1.5 3.1 1.5 3.1 1.5 3.1 1.5 3.1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	4								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2								-
1.0 1.5 2.0 10 1.5 2.0 10 10 10 14 10 10 10	0				1.6				77
20 20 18 16 14 12 10 8 6 4 2 0 2.0 2.5 3.1 トリガーデータ	1. V				1.0				2.0
200 18 16 14 12 10 8 6 4 2 0 2.0 2.5 3. トリガーデータ 発生時分:約000.64	20 3/ A								
10 14 12 10 8 6 4 2 0 2.0 2.5 3.1 トリガーデータ 発生時分:約 00:00.4	10								
10 14 12 10 8 6 4 2 0 2.0 2.5 3.1 トリガーデータ 発生時分:約 00:00.4	10								
14 12 10 8 6 4 2 0 2.0 2.5 3. トリガーデータ 発生時(分:形) 00:00.4	16								
12 10 8 6 4 2 0 2.0 2.5 3. トリガーデータ 発生時(分:形) 00:00.4	14								
10 8 6 4 2 0 2.0 2.5 3. トリガーデータ 発生時(分:形) 00:00.4	12								
8 6 4 2 0 2.0 2.5 3. トリガーデータ 発生時分:約 00:00.4	10								
6 4 2 0 2.0 2.5 3.1 トリガーデータ 発生時分:約 00:00.4 1 1 1 1 1 1 1 1 1 1 1 1 1	8								
4 2 0 2.0 2.5 3.1 トリガーデータ 発生時分:約 00:00.4 1 1 1 1 1 1 1 1 1 1 1 1 1	6								
2 0 2.0 2.5 3. トリガーデータ 発生時(分:物) 00:00.4 キャロシークション 00:05.2	, in the second s								
2000000000000000000000000000000000000	4								
0 2.0 2.5 5.5 たリガーデータ 発生時(分:物) 00:00.4 たりガーデータ	2								4.6
ということです。 ここ ここ ここ ここ ここ ここ ここ ここ トリガーデータ 見生時(分:約) 00:00.4 0 00:00.4 0 00:00.4 0 00:000 00:000 00:00 00:00 00:00 00:000	0				2.5				2.0
発生時(分:約) 00:00.4 トリガーデータ	2.0				2.0				5.0
	B-生 時(52:32) 04	0:00.4		トリガー	ーデータ				
(9-10) 00-00.2	非止時(分:秒) 00	0:05.2							
最大価(<u>(()))</u> 日6.017 母生時(公:36)	最大値(µA) 時生時(S2:36)	16.017							
#止時(分:物)	非正時(分:秒)								

6) 電流データの印刷例です。

表示中	27	(##1) 1	717 180 205 14	1月11月 また	L -	° 11	以市	貝化		and e			0.0.0	0 10 40	2
需要家	1 1	(株))	以與蒐機	我作所	7-7	h .		て電达り	18 /	測測	ET -9		200	0平度	-96-4
試験	配庄 (kV))	2		成極比	1.3	3 (良)	試験環	境 晴れ 社	25.0度 (3.相一相	52.096 B	0映日時 - 2、1種類	2006/	07/25 11 (sg) 10	:36:2 0.0 (m
最終	直(µA)	0). 039 (j	見)	弱点比	1.2	(注意)	漏れ雷	流	R相	=3.015	相=3.2	T相=3	1 (mA)	v. v gi
りが設け	定値(µ	A)	5.0	3-7	x絶縁(M	Ω) !	98.0	備考	~~		0.010	14 0.21	THE V.		
時間	7-9	時間	7-9	時間	7-3	時間	7-9	時間	7-9	勝関	7-9	時間	7-9	時間	7-3
00:00.2	0.000	00:14.0	0.131	00:27.8	0.078	00:41.6	0.060	00-55.4	0.063	01:09.2	D. 045	D1:23.0	0.045	01:36.B	D. D/
00:00.4	5.406	00:14.2	0.129	00:28.0	0.078	00:41.8	0.060	00-55.6	0.053	01:09.4	0.047	01:23.2	0.045	01:37.0	D. D
60:00.6	13.079	00:14.4	0.127	00:28.2	0.078	00:42.0	0.060	00-55.8	0.063	01:09.6	D. 047	D1:23.4	0.045	01:37.2	D. D
8.00:00	15.390	00:14.6	0.127	00:28.4	0.078	00:42.2	0.060	00-56.0	0.063	01:09.8	0.047	D1:23.6	0.045	01:37.4	0.0
00:01.2	16.017	00: 14: 0 00: 15: 0	0.123	00:28.8	0.074	00:42.4	0.060	00-56.4	0.063	01:10.0	D. 047	01:23.0	0.043	01:37.8	0.0
00:01.4	15.933	00:15.2	0.121	00:29.0	0.076	00:42.8	0.060	00-56.6	0.063	01:10.4	0.047	01:24.2	0.043	01:38.D	D. 0
00:01.6	15.744	00:15.4	0.121	00:29.2	0.076	00:43.0	0.060	00-56.8	0.063	01:10.6	0.047	01:24.4	0.043	01138.2	D. 0
00:01.8	15.506	00:15.6	0.119	00:29.4	0.074	00:43.2	0.058	00-57.0	0.063	01:10.8	0.047	D1:24.6	0.043	01:38.4	D. 0
00:02.0	10.234	00:15.8 00:16.0	0.119	00:29.6	0.074	00:43.4	0.060	00-57.2	0.063	01:11.0	0.047	01:24.8	0.043	01:38.6 01:38.8	0.0
00:02.4	14.642	00:16.2	0.116	00:20.0	0.074	00:43.8	0.068	00-57.6	0.063	01:11.4	0.047	01:25.2	0.045	01:36.0	0.0
00:02.6	14.334	00:16.4	0.116	00:30.2	0.074	00:44.0	0.060	00-57.8	0.063	01:11.6	0.047	01:25.4	0.045	01139.2	D. 0
60:02.8	14.021	00: 16. 6	0.114	00:30.4	0.074	00:44.2	0.060	00-58.0	0.063	01:11.8	0.047	D1:25.6	0.045	01:39.4	D. 0
00:03.0	13.706	00:16.B	0.114	00:30.6	0.074	00:44.4	0.068	00-58.2	0.063	01:12.0	0.047	D1:25.8	0.043	01:39.6	D. 0
00:03.2	13. 396 13. GET	00:17.0	0.112	00:21.0	0.074	00:44.6	0.006	00-58.6	0.061	01:12.2	0.04/	01:26.0	0.043	01:39.6	0.0
00:03.6	12.780	00:17.4	0.110	00:31.2	0.072	00:45.0	0.008	00-58.8	0.061	01:12.6	0.047	D1:26.4	0.043	01:40.2	D. 0
8.60:00	12.435	00:17.6	0.110	00:31.4	0.072	00:45.2	0.058	00-59.0	0.061	01:12.8	0.047	D1:26.6	0.043	01:40.4	D. 0
00:04.0	12.130	00: 17. B	0.108	00:31.6	0.072	00:45.4	0.058	00-59.2	0.051	01:13.0	0.047	D1:26.8	0.045	01:40.6	D. 0
00:04.2	11.866	00:18.D	0.105	00:31.8	0.070	00:45.6	0.058	00-59.4	0.061	01:13.2	D. 047	D1:27.0	0.045	01:40.B	D. 0
00:04.4	11.349	00:18.2	0.105	00:32.0	0.072	00:45.8	0.006	00-59.6	0.001	01:13.4	0.047	01:27.Z 01:27.4	0.043	01:41.0	0.0
00:04.8	10.735	00:18.6	0.104	00:32.4	0.070	00:46.2	0.058	01-00.0	0.051	01:13.8	0.047	D1:27.6	0.043	01:41.4	D. 0
00:05.0	9.785	00: 18. B	0.102	00:32.6	0.070	00:46.4	0.058	01-00.2	0.051	01:14.0	0.047	01:27.8	0.043	01:41.6	D. 0
00:05.2	7.616	00: 19. D	0.102	00:32.8	0.070	00:46.6	0.057	01-00.4	0.061	01:14.2	D. 047	D1:28.0	0.043	01:41.B	D. 0
00:05.4	4.755	00:19.2	0.102	00:33.0	0.070	00:46.8	0.057	01-00.6	0.061	01:14.4	0.047	D1:28.2	0.043	01:42.0	D. 0
90:05.9	2.891	00:19.4	0.100	00:33.2	0.070	00:47.0	0.057	01-00.8	0.061	01:14.9	0.047	01:28.4	0.043	01:42.2	0.0
00:05.0	0.674	00: 19: 0 00: 19: B	0.098	00:23.6	0.070	00:47.4	0.057	01-01.2	0.061	01:15.0	D. 047	D1:28.8	0.043	01:42.6	D. 0
00:06.2	0.483	00 [:] 29. 0	0. D98	00:33.8	0.070	00:47.6	0.067	01-01.4	0.061	01:15.2	D. 047	01:29.0	0.043	01:42.B	D. 0
00:06.4	0.401	00129.2	0. D98	00:34.0	0.068	00:47.8	0.067	01-01.6	0.061	01:15.4	0.047	01:29.2	0.043	01:43.D	D. 0
00:06.6	0.357	00:20.4	0.096	00:34.2	0.068	00:48.0	0.057	01-01.8	0.061	01:15.6	0.047	D1:29.4	0.043	01:43.2	D. 0
8.20:00	0.328	00° 29, 6	0.096	00:34.4	0.068	00:48.Z	0.057	01-02.0	0.061	01:15.8	0.04/	D1:29.6	0.043	01:43.4	0.0
00:07.2	0.300	00:20.0	0.094	00:34.8	0.095	00:48.6	0.067	01-02.4	0.061	01:16.2	D. 047	D1:30.0	0.043	01:43.B	D. 0
00:07.4	0.275	00:21.2	0.094	00:35.0	0.068	00:48.8	0.057	01-02.6	0.061	01:16.4	D. 045	01130.2	0.043	01:44.D	D. 0
00:07.6	0.263	00:21.4	0.094	00:35.2	0.068	00:49.0	0.057	01-02.8	0.051	01:16.6	D. 045	01:30.4	0.043	01:44.2	D. 0
8.70:00	0.251	00:21.6	0.062	00:35.4	0.096	00:49.2	0.067	01-08.0	0.061	01:16.8	D. 045	D1:30.6	0.043	01:44.4	D. 0
00:08.0	0.243	00:21.B	0.062	00:35.6	0.096	00:49.4	0.067	01-08.2	0.049	01:17.0	0.045	D1:30.8	0.043	01:44.6	0.0
00:08.2	0.234	00:22.0	0.062	00:36.0	0.099	00:49.6	0.007	01-08.4	0.001	01:17.4	0.045	01:31.2	0.043	01:44.8 01:45.0	0.0
00:08.6	0.218	00:22.4	0.090	00:36.2	0.096	00:50.0	0.067	01-03.8	0.061	01:17.6	D. 045	D1:31.4	0.043	01:45.2	D. 0
8.80:00	0.212	00:22.6	0.090	00:36.4	0.096	00:50.2	0.067	01-04.0	0. D49	01:17.8	D. 045	D1:31.6	0.043	01:45.4	D. 0
0.09.0	0.206	00: 22. B	0.090	00:36.6	0.096	00:50.4	0.057	01-04.2	0.061	01:18.0	D. 045	D1:31.8	0.043	01:45.6	D. 0
00:09.2	0.200	00:23.D	0.088	00:36.8	0.096	00:50.6	0.055	01-04.4	0.061	01:18.2	D. 045	D1:32.0	0.043	01:45.B	0.0
00:09.6	0.199	00:23.2	0.088	00:37.2	0.094	00:30.8	0.067	01-04.8	0.048	01:18.4	D. 045	01:32.2	0.043	01:46.0	0.0
8.80:00	0.186	00:23.6	0.088	00:37.4	0.064	00:51.2	0.067	01-05.0	0. D49	01:18.8	D. 045	D1:32.6	0.043	01:46.4	D. 0
10:10.0	0.182	00:23. B	0. D96	00:37.6	0.064	00:51.4	0.055	01-05.2	0.051	01:19.0	D. 045	D1:32.8	0.043	01:46.6	D. 0
0:10.2	0.180	00: 24. D	0.086	00:37.8	0.064	00:51.6	0.055	01-05.4	0.051	01:19.2	D. 045	D1:33.0	0.043	01:46.B	D. 0
10:10.4	0.175	00:24.2	0.086	00:38.0	0.064	8 16:00	0.055	01-05.6	0.049	01:19.4	0.045	01:33.2	0.043	01:47.0	D. 0
0:10.8	0.167	00:24.6	0.084	00:38.4	0.064	00:52.2	0.065	01-06.0	0.049	01:19.8	D. 045	D1:33.6	0.043	01:47.4	0.0
0:11.0	0.163	00:24.B	0.084	00:38.6	0.064	00:52.4	0.055	01-06.2	0. D49	01:20.0	D. 045	D1:33.8	0.043	01:47.6	D. 0
0:11.2	0.161	00: 25. D	0.082	00:38.8	0.064	00:52.6	0.055	01-06.4	0. D49	01:20.2	D. 045	D1:34.0	0.043	01:47.B	D. 0
0:11.4	0.159	00:25.2	0.084	00:38.0	0.062	00:52.8	0.055	01-06.6	0. D49	01:20.4	D. 045	D1:34.2	0.043	01:48.0	D. 0
0:11.6	0.157	00:25.4	0.082	00:38.2	0.062	00:53.0	0.055	01-06.8	0.049	01:20.6	0.045	D1:34.4	0.043	01:48.2	D. 0
0:12.0	0.155	00-25.6 00:25.8	0.082	00:39.6	0.042	00:53.4	0.000	01-07.0	0, 049	01:20.8	0.043	D1:34.8	0.041	01:48.6	0.0
0:12.2	0.149	00:26.D	0.082	00:39.8	0.062	00:53.6	0.065	01-07.4	0. D49	01:21.2	D. 045	D1:35.0	0.043	01:48.B	D. 0
0:12.4	0.147	00:26.2	0.082	00:40.0	0.062	00:53.8	0.055	01-07.6	0. D49	01:21.4	D. 045	D1:35.2	0.043	01:49.D	D. 0
0:12.6	0.145	00126.4	0.080	00:40.2	0.062	00:54.0	0.063	01-07.8	0. D49	01:21.6	D. 045	D1:35.4	0.043	01:49.2	D. 0
0:12.8	0.141	00:26.6	0.080	00:40.4	0.062	00:54.2	0.063	01-06.0	0. D49	01:21.8	D. 045	D1:35.6	0.043	01:49.4	D. 0
0:13.0	0.139	00° 26. B	0.080	00:40.6	0.062	00:54.4	0.063	01:06.2	0.049	01:22.0	0.045	D1:35.8	0.043	01:49.6	0.0
00:13.4	0.137	00:27.2	0.080	00:41.0	0.042	00:54.8	0.063	01-08.4	0,049	01:22.2	D. 045	01:36.2	0.041	01-49.8 01:50.0	0.0
00:13.6	0.135	00:27.4	0.078	00:41.2	0.090	00:55.0	0.063	01-08.8	0.047	01:22.6	D. 045	D1:36.4	0.043	01:50.2	D. 0
00:13.8	0.133	00:27.6	0. D78	00:41.4	0.090	00:55.2	0.053	01-09.0	0. D45	01:22.8	D. 045	01:36.6	0.043	01:50.4	D. 0

8-4 データ処理

- ・エクセル等の表計算ソフトで処理を行う為に、テキストデータの出力が可能です。
- テキスト出力を行いたいデータを表示します。
 上部アイコンのテキスト出力をクリックします。

畾 ハイボルトテスタ							
ファイル(E) 測定データ(M)	設定(S) 表示(V) ヘルブ	(H)					
D . 3 N 4 4	8 3	測定值軸:	50 🔽 μA	表示開始時間: 0.	0 🔽 分 幅: 1 🔽 分		
需要家名 开来	<u> </u>	乍所 ケーブル	Ę	受電送り	測定データ	2006年度	
	5	成極比		試験環境	晴れ 25.0度 62.0%	試験日時 2006/07/25 11:38:5	i4
最終値(μA)	0.094(良)	弱点比		「漏れ電流」	3 作日一子古 R 末月=3.0	- 9~2 M理実員 - 38.0(Sq) 100.0(S木目=3.2 T木目=3.1 (mA)	.m.)
<u>トリガ設定値(μA)</u>	5.0	シース絶縁(MΩ)	98.0	備考			1
測定時間 測定データ (分:秒) (µA)	THE (7.71)		-	トリガーラ			
00:00.2 0.000	発生(分:秒) 00:00.4						
00:00.4 25.360	19正(分:約) 00:05.2						
	最大値(pA) 32.802						
00:01.0 31.152	50 A						_
00:01.2 31.545	~						
00:01.4 31.783	45						
00:01.6 31.545	40						
00:02.2 30.202	40						
00:02.4 29.746	15.20						
00:02.6 29.026	35						
00:02.8 27.976	h						
00:03.0 27.162	30						
00:03.2 20:005							
00:03.6 25.512	25						_
00:03.8 24.926							
00:04.0 24.316	20						
00:04.4 22.307	15						
00:04.8 20.129	10						
00:05.0 15.630							
00:05.2 9.522	10						
00:05.6 2.200							
00.05.0 2.209	5	· · · · · · · · · · · · · · · · · · ·					
00:06.0 0.879							
00:06.2 0.735	0L	<u></u>			1		分
00:06.4 0.662	0.0			0.	.5		1.0
テキスト出力							

テキストデータの出力先を設定します。
 出力後、エクセル等を起動する場合は、
 "出力後、次のプログラムでファイルを開く"
 にチェックをして下さい。
 選択が完了すると、田力ボタンをクリックします。

テキスト出力(CSV形式)	×
出力先:	
C:¥Documents and Settings¥All Users¥Documents¥共有データ	参照
出力ファイル名:	
DAT_20060417_153051.CSV	
□ 出力後, 次のプログラムでファイルを開く	
	参照
指定しない(空白)にすると出力ファイルに関連しているプログラムが起動されます	
(出力) キャ	ンセル

3)出力が完了するとOKボタンを押します。

9. 外形図

